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Fig. 1: Original (unstabilized) and stabilized video frame pairs for four sample workspaces. The videos are acquired with the camera
built in an AR HMD worn by a user who walks around and rotates their head. Our method alleviates the view changes in the original
first-person videos, keeping the static parts of the scene in place, which results in a stable visualization of the workspace, suitable for
a remote collaborator (e.g. a mentor). Our method can handle complex 3D geometry (all examples), large view changes (Workbench,
Lobby), large depths (Lobby), and dynamic geometry, complex reflectance properties, and outdoor scenes (running Fountain).

Abstract—Augmented Reality (AR) technology benefits telementoring by enhancing the communication between the mentee and
the remote mentor with mentor authored graphical annotations that are directly integrated into the mentee’s view of the workspace.
A less studied but nonetheless important problem is conveying the workspace to the mentor effectively, such that they can provide
adequate guidance. AR headsets now incorporate a front-facing video camera, which can be used to acquire the workspace. However,
simply providing to the mentor this video acquired from the mentee’s first-person view is inadequate. As the mentee changes head
position and view direction, the mentor’s visualization of the workspace changes frequently, unexpectedly, and substantially, which
hinders mentor performance. This paper presents a method for the robust high-level stabilization of a mentee first-person video to
provide an effective visualization to a remote mentor. The visualization is stable, complete, up to date, continuous, distortion free, and
rendered from the mentee’s typical viewpoint, as needed to best inform the mentor of the current state of the workspace, for prompt
and effective telementoring. The visualization is implemented by projecting the tracked video feed onto a planar proxy of the workspace.
The stabilization method was evaluated in two user studies. In one study, stabilized visualization had significant advantages over
unstabilized visualization, in the context of three number matching tasks. In a second study, stabilization was tested, with good results,
in the context of surgical telementoring, specifically for cricothyroidotomy training in austere settings.

Index Terms—Augmented Reality, telementoring, mentor, first-person video, stable visualization
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INTRODUCTION

As science and technology specialize ever more deeply, it is more and
more challenging to gather in one place the many experts needed to
perform a complex task. Telecollaboration can transmit expertise over
large geographic distances promptly and effectively.

A special case of telecollaboration is telementoring, where a mentee
performs a task under the guidance of a remote mentor. One approach
is to rely only on an audio channel for the communication between
mentor and mentee. Telestrators enhance communication with a visual

channel—the mentor annotates a video feed of the workspace, which
is then shown to the mentee on a nearby display. The challenge is that
the mentee has to switch focus repeatedly away from the workspace,
and to remap the instructions from the nearby display to the actual
workspace, which can lead to a high cognitive load on the mentee,
and ultimately to task completion delays and even errors. Augmented
Reality (AR) technology can solve this problem by directly integrating
the annotations into the mentee’s field of view. The mentee sees the



annotations as if the mentor actually drew them on the 3D geometry of
the workspace, eliminating focus shifts.

A problem less studied but nonetheless of great significance is con-
veying the workspace to the remote mentor effectively. One approach
is to acquire the workspace with an auxiliary video camera, and to
send its video feed to the mentor. Not only does the approach require
additional hardware, but the auxiliary camera captures the workspace
from a different view than that of the mentee. Effective telementoring
requires for the mentor to see what the mentee sees for the instructions
to be as relevant and easy to understand as possible. For example,
when using an auxiliary camera, the mentor might annotate a part of
the workspace that is not visible to the mentee due to occlusions, or,
conversely, the mentor might not see the part the mentee is working on.

With the advancement of AR technology, self-contained optical
see-through head mounted displays (HMDs) are now available. Such
HMDs typically incorporate a front-facing onboard camera, which
can capture the workspace from a viewpoint close to the mentee’s
viewpoint. However, simply providing the mentee first-person video
to the mentor is insufficient for effective telementoring. As the mentee
changes head position and view direction, the mentor’s visualization of
the workspace changes frequently and substantially, which adversely
affects the mentor’s understanding of the scene. This in turn degrades
the quality of the guidance provided by the mentor, and ultimately the
mentee’s performance. For example, when the mentee looks to the left,
the workspace visualization shifts by hundreds of pixels to the right;
when the mentee moves to the other side of the workspace as might be
needed for best access during task performance, the visualization rolls
180°, which results in an upside-down visualization that is frustratingly
difficult to parse. What is needed is a robust high-level stabilization
of the mentee first-person video, such that it can provide an effective
visualization of the workspace to the mentor.

In this paper we present the design, implementation, and evaluation
of a method for robust high-level stabilization of a video feed acquired
from a mentee’s first-person view, in order to provide a remote mentor
with an effective visualization of the mentee’s workspace. The output
visualization has to be (1) stable, i.e. to show the static parts of the
scene at a constant image location, (2) real-time, i.e. to keep up with
the input feed, and (3) of high quality, i.e. without distortions, tears
and other artifacts. In addition to conveying the workspace to the
mentor, the output visualization should also be a (4) suitable canvas
on which the mentor can author annotations to provide guidance. The
paper reports the investigation of three approaches: (a) 2D stabilization
based on tracked frame features, and projective texture-mapping of
the tracked video feed on a 3D model of the workspace, with the 3D
model being either (b) a 3D triangle mesh or (c) a proxy plane. The
proxy plane approach was adopted as the one that best satisfies the
design requirements. Fig. 1 illustrates the robustness of our stabilization
method on a variety of challenging workspaces.

We evaluated the effectiveness of our stabilization method in two
controlled within-subject user studies. One study (n = 30) investigated
workspace visualization quality by asking participants to find matching
numbers in a video of a workspace annotated with numbers. The study
used three workspaces: a Sandbox, a Workbench, and an Engine (the
Workbench and the Engine are shown in Fig. 1 without the numbers). In
the control condition, participants watched the original (unstabilized)
video acquired with the HMD camera; in the experimental condition,
the video was stabilized with our method, which showed significant

advantages in terms of task performance and participant workload.

For the sandbox workspace we compared our method to a perfectly
stable video acquired from a tripod, and participants did not perform
significantly better in the perfect stable condition. The second study
tested our method in the context of surgical telementoring, where
participants (n = 20) practiced cricothyroidotomy procedures on patient
simulators (Fig. 2). The study was conducted in an austere setting
of an empty room, with the patient simulator on the floor, with poor
visibility achieved with a fog machine, and with loud combat-like
noises. Compared to audio-based telementoring, the stabilized video
telementoring improved surgical performance significantly. We also
refer the reader to the accompanying video.

Fig. 2: Cricothyroidotomy training in austere environment using video
feed stabilized with our method. The mentee wears an AR HMD that
acquires the surgical field (top), the video feed is sent to the mentor
where it is stabilized (rows 2-4, raw left, stabilized right), the mentor
annotates the stabilized feed (bottom), and the annotations are sent to
the mentee where they are displayed with the AR HMD. For this study,
the stabilized video was shown over a grayscale background image
pre-acquired from the initial view, which provides context.

2 PRIOR WORK

The widespread availability of digital cameras and of broadband in-
ternet connectivity enable telecollaboration by acquiring the local
workspace with a video camera whose feed is transmitted to a remote
site. An important design decision is where to place the camera in order
to provide an effective remote visualization of the workspace.

One approach is to mount the camera on a tripod. This approach
was used to build a surgical telementoring system where the operating
field was acquired with a ceiling-mounted overhead camera [2]. The
top view is substantially different from the mentee’s view, which re-
duces telementoring effectiveness, as a mentor can best guide a mentee
when the mentor sees what the mentee sees, and when the mentor
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issues instructions in the mentee’s frame of reference. Another surgical
telementoring system acquires the operating field with the front-facing
camera of a computer tablet mounted with a bracket between the mentee
and the patient [1]. The operating field is acquired from a view similar
to that of the mentee, but the tablet creates workspace encumbrance.
A shortcoming common to both systems is that the operating field is
acquired from a fixed view. A second approach is to rely on the lo-
cal site collaborator to acquire the workspace with a hand-held video
camera, changing camera pose continually for a good visualization for
the remote collaborator [8]. The problem is that the local collaborator
becomes a cameraman, which hinders collaboration.

A third approach is to rely on a head mounted camera [13]. This
brings freedom to the local collaborator, who can focus more on the
collaborative task. A 360° video camera captures more of the environ-
ment and provides the remote collaborator with more awareness of the
local space [12]. One disadvantage is having to wear the head mounted
camera. The disadvantage has been alleviated as internet-connected
cameras have been miniaturized, e.g. telecollaboration using Google
Glass [20]. We have adopted this third approach. In our context, having
to wear the head-mounted camera is not an additional concern since
the mentee already has to wear an AR HMD.

The fundamental challenge of acquiring the workspace with a head-
mounted camera is that the visualization of the workspace provided
to the mentor changes abruptly, substantially, and frequently as the
local collaborator moves their head during task performance. Such
a visualization can lead to a loss of situational awareness, to a high
cognitive load, to task performance delays and errors, and to cyber-
sickness. Researchers have investigated addressing this challenge by
attempting to stabilize the video such that it does not change as the
local collaborator moves their head.

One approach is to use optical flow to track features over the se-
quence of frames, to define homographies between consecutive frames
using the tracked features, to register all frames in the coordinate sys-
tem of the first frame, and to stabilize each frame by 2D morphing it
to the constant coordinate system of the first frame [13]. A second
approach is to acquire a 3D geometric model of the workspace, to track
the video camera, and to projectively texture map the model with the
video frames, from a constant view. One option for acquiring the model
is SLAM [8], another option is to use real-time active depth sensing.
As we designed our stabilization technique, we investigated both of
these approaches, as discussed in Sect. 3.2.

We point out that low-level video stabilization techniques do not
meet our goal of high-level video stabilization. We define low-level
video stabilization as the process of removing small, high-frequency
camera pose changes, such as the jitter of a hand-held camera [15,22],
or of a bicycle helmet mounted camera [11], with the goal of obtaining a
smooth video, as if the video were acquired with a physically stabilized
(e.g. gyro-stabilized) camera. The low-level stabilized video keeps the
large amplitude pose changes of the acquiring camera. If a hand-held
camera is panned 30° to the right, low-level stabilization preserves the
30° pan, striving for a smooth angle change from 0° to 30°. In contrast,
high-level stabilization aims to remove the 30° pan altogether.

3 HIGH-LEVEL STABILIZATION OF FIRST-PERSON VIDEO

Consider the AR telementoring scenario with a mentee wearing an
optical see through AR HMD. The HMD has a built-in front-facing
video camera that captures what the mentee sees. The goal is to use
this video feed to inform a remote mentor of the current state of the
workspace. In addition to audio instructions, the mentor also provides
guidance through graphical annotations of the workspace. Therefore,
the video feed should also serve as a canvas on which the mentor
authors annotations of the workspace.

3.1 Effective Mentor-Side Visualization Requirements

An effective mentor-side workspace visualization has to satisfy the
following requirements:

Stability. The visualization of the workspace should not move, to
allow the mentor to examine it in detail. Complex tasks require for the
mentor to concentrate on the workspace, and unexpected changes in the

visualization are particularly frustrating, forcing the mentor to abandon
the AR-enabled graphical communication channel, and to take refuge
in the trusted audio communication.

View agreement. The mentor’s view of the workspace should be
similar to that of the mentee, for the mentor to provide guidance directly
in the mentee’s context, avoiding any remapping that could confuse the
mentee. Furthermore, due to occlusions, a different viewpoint could
show different parts of the workspace to the mentor and mentee, which
brings substantial challenges in communication when one party refers
to workspace elements not visible to the other party.

Real time. The visualization of the workspace should be always up
to date. Any latency leads to an inconsistent state of the workspace
between the mentor and mentee, which complicates communication.

High visual quality. The visualization should be free of static and
temporal artifacts such as tears, holes, and distortions. Of particular
importance are scene lines, which should project to lines in the visual-
ization. The high visual quality is essential not only for the mentor’s
understanding of the workspace, but also for the mentor’s ability to
draw and place graphical annotations accurately.

3.2 Approaches Considered

The stability concern is well addressed by acquiring the workspace
with an additional, fixed camera. One concern is where to mount this
additional camera. Meeting the view agreement requirement is difficult,
as placing the additional video camera on a tripod such that it captures
the workspace from the mentee’s viewpoint encumbers the workspace.
Placing the camera opposite the mentee to capture the workspace at a
similar angle but from the other side is problematic because reprojection
to the mentee’s viewpoint requires substantial viewpoint translation
which results in objectionable disocclusion artifacts. In a previous
system we opted for an overhead placement of the additional camera,
which does not satisfy the view agreement requirement, and also suffers
from occlusions when the mentee leans over the workspace. The need
to deploy an additional camera is another shortcoming of this approach,
of particular concern in austere settings.

A mentee-acquired first person video satisfies the view agreement
requirement, and it is well suited for austere environments since it does
not require additional equipment. However, the stability requirement
disqualifies the mentee first-person video from being used as is. As
the mentee temporarily looks away from the workspace, for example
to grab a tool, the visualization of the mentor would change abruptly
and significantly. Even the small head motions that the mentee makes
naturally to focus on various parts of the workspace are sufficiently
distracting to decrease mentor performance.

We investigated three approaches for stabilizing the mentee first-
person video. The first approach attempts a 2D stabilization in the
same spirit of the method described by Lee and Hollerer [13]. Our
pipeline finds frame features using SIFT [16], computes an initial
feature matching using FLANN [18], removes outlier matches and finds
an initial homography using RANSAC [5], optimizes the homography
using least squares, and warps the current frame to the first frame using
the optimized homography. This 2D stabilization approach did not
produce satisfactory results in our contexts. First, the workspace is not
truly planar, and the planar approximation computed by the method
changes from frame to frame based on the current set of tracked features,
which leads to poor stabilization. Second, the method is not sufficiently
robust. Occasional incorrect feature tracking leads to large homography
errors and poor video stability. Third, when the mentee abruptly looks
away from the workspace, e.g. to grab a tool, feature tracking fails
altogether, and regaining tracking is difficult. Finally, our application
has a very low tolerance for stabilization artifacts—even a single video
stabilization artifact can ruin the surgical telementoring experience.

The second approach for mentee first-person video stabilization that
we investigated acquires the 3D geometry of the workspace, it tracks
the HMD video camera, and it renders from a stable viewpoint the
workspace geometry projectively texture mapped with the video frames.
In theory, this approach should yield a perfectly stable visualization of
the workspace: accurate geometry and an accurately tracked projective
video texture create a consistent 3D scene that appears stable when
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(d) Frame stabilized using acquired geometry

(e) Frame stabilized using accurate geometry

(c) Geometry acquired with HMD depth camera

(f) Frame stabilized on planar proxy

Fig. 3: Stabilization of current frame (b) to initial view (a) by projective texture-mapping onto acquired (c, d), accurate (e), or proxy geometry (f).

Disocclusion errors are highlighted in green.

Mentee Mentor
— P
Planar —
W
Proxy —
Fitting c 5
2] 9] S >
= = T =
x | RGBy Y | 3 2
Encoding & "1 &
RGB, Vil Compression R >
—/
— —

Fig. 4: System overview. Red arrows illustrate the data flow during
system initialization, and black arrows during system operation.

rendered from a fixed view. In practice, high-quality real time depth
acquisition and geometric modeling of a dynamic scene with complex
geometric and reflectance properties remains a challenging problem.
Our AR HMD does acquire scene geometry with built-in depth camera,
but the quality of the acquired depth is insufficient for a stable image.
Any imperfection in the underlying workspace geometric model distorts
the visualization. In Fig. 3, the goal is to project the current frame (b)
to the initial view targeted by stabilization (a); using the geometry
acquired by the AR HMD depth camera (c) results in objectionable
distortions (d), which change from frame to frame.

We argue that even if the AR HMD would acquire a flawless RGBD
stream, projective texture mapping the acquired depth would still not
produce satisfactory results. Whenever a surface is visible from the
stabilized viewpoint but not from the acquisition viewpoint, the re-
sulting disocclusion error causes a disturbing tearing artifact in the
visualization. Using Fig. 3 again, even projecting onto perfect geom-
etry results in an imperfect visualization suffering from disocclusion
errors (e). Disocclusion errors could be addressed by acquiring a com-
plete workspace model by integrating a sequence of RGBD frames
acquired with a moving depth camera, e.g. with a Kinect Fusion like
approach [19], but such a sequential acquisition is ill-suited for highly
dynamic environments with ever-changing geometry. Another option
is to acquire the workspace with multiple stationary depth cameras
simultaneously, but this complicates the hardware setup substantially,
beyond what is practical in an austere setting.

3.3 Stabilization by Projection on Planar Proxy

The third approach investigated, which we adopted, is to projectively
texture map the tracked video feed onto a planar proxy of the workspace
geometry. Fig. 4 gives an overview of our pipeline. The workspace
plane W is defined, once per session (red arrows) based on the depth
channel Dy of the first frame acquired by the AR HMD. W is sent to
the remote mentor and it remains constant for the entire telementoring
session. The world coordinate system is defined as the coordinate
system V of the first frame. The color RGBy of the first frame is
used to define a background image, that will provide context to the
visualization of the stabilized frames. RGB( and V;y are encoded into a
frame F{ sent to the mentor during initialization stage.

Then, during operation, the color RGB; and pose V; of each frame
F; are transferred to the mentor. The current frame is stabilized by
projectively texture mapping the frame over the workspace plane, on
top of an optional background image. Rendering the textured planar
proxy takes negligible time, even on the thinnest of mentor platforms,
such as a computer tablet or a smartphone, so the visualization is real
time. The visualization is of high quality, without tears, and without
distortions, with scene lines projecting to lines in the visualization
(Fig. 3f). The effect is similar to a photograph of a photograph of a 3D
scene. The concatenation of an additional projection does not make the
visualization confusing, the same way a visualization makes sense to
two or more users seeing it on a display, with no one assuming the true
viewpoint from where it was rendered.

4 THEORETICAL VISUALIZATION STABILITY ANALYSIS

The two possible sources of visualization instability are workspace
geometry approximation error, and video camera tracking error. In this
section we provide a theoretical analysis of the impact of these two
errors on visualization stability. In the next section we provide empirical
estimates of visualization stability, as measured in our experiments.

4.1 Visualization instability definition

Given a 3D workspace point P, an initial frame Fy with view Vjy, and a
current frame F; with view V;, we define the reprojection error of P as
the distance ¢;(P) between where P should be seen from Vj and where
it is actually seen in the stabilized F;. In Equation 1, the actual location
of P in the stabilized frame is denoted with x (P,V;,Vp), and the correct
location (P, Vj) is obtained by projecting P with V. The approximate
projection function } depends on the stabilization approximation errors.
e;(P) is relative to the frame’s diagonal d to obtain an adimensional,
image resolution independent measure of reprojection error.
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Fig. 5: Visualization stability analysis through simulation.

ei(P) = HX(P»Vi,VOL— T(PVo)||

Given a point P and two consecutive frames F; and Fj |, we define
visualization instability at P as the absolute change in reprojection error
from F; to Fj; 1, as given by Equation 2.

(€]

&(P) = leir1(P) —ei(P)] 2
4.2 Simulation scenario

In order to estimate the visualization instability of our method, we have
simulated a typical telementoring scenario, where the mentee performs
a task at a workspace in front of them. In Fig. 5a, the workspace is
Imx1m wide, and it is 1m above the floor. The actual workspace
geometry is in between two planes (dotted lines) that are 20cm apart.
Our method approximates the workspace geometry with the solid line
rectangle. The mentee is assumed to be 1.8m tall, and their default
view, to which the video is stabilized, is shown with the black frustum.

We consider two typical mentee view sequences. The first sequence
is a 25° pan to the left (blue frustum in Fig. 5a), as needed, for example,
to reach for a tool placed just outside the workspace. The panning
sequence also has a small lateral translation of 10cm, to account for
the translation of the eyes when someone turns their head to the side.
The second sequence corresponds to the mentee moving to the corner
of the workspace to see it diagonally (green frustum in Fig. 5a). This
translation sequence implies a 50cm lateral translation from the initial
position, while looking at the center of the workspace.

Instability depends on the amount the view changes from one frame
to the next, so the number of frames in the sequence is important. We
assume there are 30 frames in the sequence, which, at 30Hz, implies
completing the sequence in 1s. This is a conservative upper bound for
the view change, assuming the mentee actually examines the workspace
during the sequence. When the mentee simply wants to change focal
point from the center to the side of the workspace, the mentee does not
want to and cannot focus on the workspace during the transition, so any
instability will not be perceived, as also noted in walking redirection
research that takes advantage of saccadic eye movement to manipulate
the visualization [4].

4.3 Dependence on Geometry Approximation Error

Fig. 6 illustrates the reprojection error caused by geometry approxi-
mation error. Workspace point P is acquired by video frame V; and
projected onto the proxy plane w at PS. P and PS project at different
locations onto the stabilized view Vjy, which results in the reprojection
error elG(P). The dependence of visualization instability on geome-
try approximation error is obtained by plugging into Equation 2 the
expression for x given in Equation 3, where V;PNw is P in Fig. 6.

x(PVi,Vo) = n(ViP(iw, Vo) 3

The instability induced by geometry approximation error is largest
where the true location of a workspace point is farthest from the proxy

pG PC

Fig. 6: Reprojection error eiG(P) due to workspace geometry approxi-
mation error, and eic (P%) due to camera tracking error.

plane, i.e. on the dotted rectangles in Fig. 5. Fig. 5 illustrates the
reprojection errors at the center C and corner L of the workspace proxy,
for the last frame of the panning sequence (Fig. 5b), and for the last
frame of the translation sequence (Fig. 5c). The correct projections of
Ly, Ly, Cy, and C,; are shown with black dots. The actual projections
are shown with blue dots for the panning sequence, and with green dots
for the translation sequence. As expected, the reprojection error is tiny
for the panning sequence since the viewpoint translation is minimal. A
pure panning sequence would have a zero reprojection error.

Table 1 gives the visualization instability for each of the two se-
quences. The first row gives the maximum instability at the center
of the workspace (i.e. C in Fig. 5) over the frames of the sequences.
This maximum is reached for the last frame of the sequence, where the
viewpoint translation is largest. The second row gives the maximum
instability over the entire workspace, which is reached for the last frame
and for the near corners of the workspace, i.e. L, and R, in Fig. 5a.
For an HDTYV display with a diagonal of 2,200 pixels and 1m in length,
the instability figures translate to 1.1pix and 0.5mm for the panning
sequence, and 5.5pix and 2.5mm for the translation sequence.

An important advantage of our method is that the geometric approxi-
mation is constant, i.e. the proxy plane is does not change. This means
that, when the mentee translates their viewpoint, the instability is not
only small, but also smooth, and when the mentee pauses to focus on
a part of the workspace, the instability is 0. For a method that uses a
geometric model acquired in real time, the instability is noisy, even
when the mentee does not move.

4.4 Dependence on Camera Tracking Error

The second source of visualization instability is the error in tracking the
video camera which acquires the workspace. Using Fig. 6 again, let us
now assume that proxy plane point PC is an actual workspace point to
factor out all geometry approximation error. PS is captured at pixel p by
the frame with true viewpoint V;. If V; is incorrectly tracked at V/, then
p is incorrectly projected onto the proxy at point P, which generates
reprojection error eiC(PG). The dependence of visualization instability
on camera tracking error is obtained by plugging into Equation 2 the
expression for )y given by Equation 4, where w is the workspace proxy.

X(P.V;, Vo) = (Vi pnw,Vp) )

Unlike for the instability due to the workspace geometry approx-
imation, tracking inaccuracy affects the entire frame uniformly. We

Table 1: Visualization instability due to geometric approximation error
for two mentee sequences.

Panning Translation
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Fig. 7: Sandbox workspace with overhead projected numbers acquired
with video-camera built into an AR HMD (left column), original, un-
stabilized video frame (middle), and stabilized video frame (right).

have measured tracking accuracy to be 2 degrees for rotations and 2cm
for translations. In the scenario above, these maximum tracking errors
translate to a 2.68% and a 1.45% instability, figures that dwarf the
instability caused by geometric approximation error (Table 1). Even
assuming tracking that is an order of magnitude more accurate than
what our AR HMD provides, the instability due to workspace geometry
approximation will still be smaller than the instability due to tracking.

5 USER STuDY |I: NUMBER MATCHING

We developed a method for stabilizing the video of a workspace cap-
tured by a head mounted camera. The stabilized video serves as a
visualization of the workspace for a remote collaborator. In a first
controlled user study, we tested the effectiveness of workspace visual-
ization by asking participants to find matching numbers in the original
and the stabilized videos, for three workspaces.

5.1 Experimental Design

Farticipants. We recruited participants (n = 30, 8 female) from the
graduate student population of our university, in the 24 - 30 age group.
We opted for a within-subject design, with each participant performing
the task in all conditions.

Task. A participant was seated 2m away from an LCD monitor with a
165cm diagonal. The monitor displays a video of a workspace annotated
with numbers, and the participant is asked to find pairs of matching
numbers. When a participant spots a matching pair, they call out the
number, and an experimenter tallies the number of matches found. All
numbers called out by participants were correct matches, so no penalty
for incorrect matches was needed; in other words, participants were
calling out a number only when they spotted the matching pair, and
they were not just reading out the numbers at random in the hope of
stumbling upon the correct matching pair by chance.

Workspace 1: Sandbox. The first workspace is a sandbox in our
lab (Fig. 7). The sandbox is approximately 1mx 1m in size, and it is
placed about 1m off the floor. The sand had a depth variation of about
20cm, so this corresponds to the scenario investigated by the theoretical
instability analysis in Sect. 4. An overhead projector displays a matrix
of 4x4 numbers on the sandbox. The workspace was acquired with the
front-facing camera of an AR HMD (i.e. Microsoft’s HoloLens [17])
worn by an experimenter who walked around the sandbox while looking
at its center. The experimenter starts out at the default position, where
the numbers are correctly oriented (first row of Fig. 7). This is also the
view to which the video was stabilized. The experimenter occasionally
pans the view to the side. Then the experimenter walks to the corner of
the sandbox (second row of Fig. 7), and even on the other side, which
makes the numbers appear upside down in the video (third row of
Fig. 7). This results in a video sequence where the matrix of numbers
moves considerably. The video shows 21 matrices, and each matrix
was shown for 5s, for a total video length of 105s. 18 of the 21 matrices
had exactly one pair of matching numbers, and 3 of the matrices had no

Fig. 8: Workbench (top) and Engine (bottom) workspaces of study L.

matching numbers. Half the numbers of two consecutive matrices are
the same, which means that when the video switches from one matrix
to the next, exactly 8 of the 16 numbers change. All 8 numbers change
simultaneously at the end of the 5s. When a matrix had a matching pair,
at least one of the numbers in the pair was replaced for the next matrix,
such that a matching pair would not persist longer than the 5s that each
matrix is displayed.

Workspace 2: Workbench. The second workspace is an actual work-
bench cluttered with tools (Fig. 1 and Fig. 8). The acquisition path
was similar to that for the Sandbox workspace. The tallest tool reached
30cm above the workbench plane. The experimenter wearing the AR
HMD impersonating a mentee started out at the default position, then
panned the view, and then finally moved to the side of the workbench
to see it from a direction rotated by 90°. The numbers were added to
the workspace using pieces of paper, all facing the mentee in the initial
position. There were 24 numbers, 8 of which appeared twice, so 8
numbers were unique. Although the numbers on paper did not change,
the mentee moved tools on the workbench covering and uncovering a
few numbers. Furthermore, as the mentee viewpoint translated, some
of the numbers would appear and disappear due to occlusions.

Workspace 3: Engine. The third workspace is an actual Engine
mounted on the floor, with a height of 80cm (Fig. 1 and Fig. 8). The
Engine was decorated with numbers and was acquired similarly to the
Workbench.

Conditions. Each participant performed the number matching task

Fig. 9: Acquisition of perfectly stable video using a tripod.
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Fig. 10: Normalized box and whisker plot of pairs found, and of NASA-TLX subscores, for each of the three Sandbox conditions: perfectly
stabilized (PS), stabilized (S), and not stabilized (NS). The star indicates significance (p < 0.05). No difference between S and PS was significant.

for the Sandbox workspace in each of three conditions, in randomized
order. In one control condition, the participant was shown the raw video
with no stabilization (NS). In a second control condition, the participant
was shown a perfectly stable (PS) video that was acquired by placing
the AR HMD on a mannequin head mounted on a tripod at the default
position (Fig. 9). In the experimental condition, the participant was
shown the video stabilized with our method (S). The hypotheses related
to the Sandbox were that (1) participants will perform better in the S
condition compared to the NS condition, and that (2) participants will
not perform better in the PS condition compared to the S condition. A
subgroup of 20 participants were tested for each of the Workbench and
the Engine workspaces, for each of two conditions. Participants were
shown the original, unstabilized video in the control condition, and the
stabilized video in the experimental condition.

Metrics. We measured participant task performance as the number
of pairs found. We also measured participant workload using the NASA
Task Load Index (NASA-TLX) questionnaire [9], and participant simu-
lator sickness using the Simulator Sickness Questionnaire (SSQ) [10].
Better performance means more matching pairs found, lower cognitive
load, and absence of simulator sickness.

5.2 Results and Discussion

A within-subject statistical analysis was run to compare the three con-
ditions for the Sandbox, with three data points for each metric and for
each participant. The condition was treated as an independent variable,
while the metrics were treated as dependent variables. The participants
and the order of the trials were treated as blocks in the statistical design.
The data normality assumption was confirmed with the Shapiro-Wilk
test [21]. In addition, the data equal variance assumption was confirmed
with the Levene test [14], so no data transformation was needed. We
ran a one-way ANOVA [6] with Bonferroni correction [3] for each
condition pair, i.e. PS vs NS, PS vs S, and S vs NS. The two conditions
for the Workbench and Engine were similarly compared, except that no
Bonferroni correction is needed.

Fig. 10 gives the box and whisker plot [7] of the number of pairs
found, and of the six NASA-TLX subscales, for each of the three
Sandbox conditions. The six subscales are: mental demand, physical
demand, temporal demand, performance, effort, and frustration. All
seven metrics are normalized. As customary, the plot indicates, for
each series, the inter-quartile range (IQR) with a box, the average value
with an x, the median value with a horizontal line, farthest data points
that are not outliers with whiskers, and outliers with dots. Outliers are
data points “outside the fences”, i.e. more than 1.5 times the IQR from
the end of the box. NS participants found on average 28% or 5.1 of
the 18 matching pairs. S participants found on average 36% or 6.5. PS
participants found on average 34% or 6.3. The differences between S
and NS, and PS and NS are significant, while the difference between
PS and NS is not. The best performing participant found 12 of the 18

Table 2: Comparison between the number of pairs found in the no
stabilization (NS) and stabilization (S) conditions.

Workspace NS S S-NS p-value
Workbench ~ 5.45+0.83  5.95+1.19 0.50£0.28  0.043*
Engine 5.05£1.57 6.10£1.29 1.05+0.31  0.002*

Table 3: p-values of NASA TLX subscore differences between no
stabilization (NS) and stabilization (S) conditions (i.e. NS-S).

Mental Physical Temporal pg ..
Workspace Demand Demand Demand mance Effort Frustration

Workbench 0.000% 0.000% 0.001* 0.188 0.356  0.001%*
Engine 0.005* 0.050* 0.000% 0.034 0.002* 0.001*

matching pairs for both the S and PS conditions, performance levels
that are within the fence and therefore not outliers; this participant only
found 8 matching pairs in the NS condition.

S and PS participants reported significantly lower cognitive load
than NS on all six NASA-TLX subscales, and no subscale reported
a significant difference between PS and S. For NS, the upper fence
exceeded the maximum possible value of 1.0, and it was therefore
capped at 1.0, for all six NASA-TLX subscales. This indicates the high
cognitive load in the NS condition, and it eliminates the possibility
of outliers. For S and PS, two of the scales had the upper fence at
1.0, which leaves the possibility of outliers for the other four scales.
However, there was only one outlier for the PS condition, and one
for the S condition (both for the TLX-2 scale), which strengthens the
confidence that PS and S place less demand on the participant.

Table 2 gives the number of pairs found for the Workbench and the
Engine workspaces, for each of the unstabilized (NS) and the stabilized
(S) conditions. S has a significant advantage for both workspaces. Ta-
ble 3 compares the NASA TLX scores between between the S and NS
conditions (i.e. NS-S, as lower NASA TLX scores indicate less demand
on the participant). Most S advantages are significant.

For the Sandbox workspace, the analysis of the Total Severity score
derived from the SSQ answers indicates the absence of simulator sick-

Table 4: p-values of SSQ Total Severity score differences between no
stabilization (NS) and stabilization (S) conditions (i.e. NS-S).

Workspace Nausea Oculomotor Disorientation Total Severity
Workbench  0.019* 0.001* 0.116 0.004*
Engine 0.053 0.060 0.019* 0.021*




Fig. 11: Features selected for empirical visualization stability analysis,
highlighted here with red circles for illustration purposes.
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Fig. 12: Trajectories of 9 tracked feature points, in normalized pixel
coordinates, for the NS (left) and S (right) Sandbox conditions.

ness in all three conditions. Furthermore, there are no significant
differences for any of the three differences PS-NS, S-NS, and PS-S, for
any SSQ subscore, i.e. Nausea, Oculomotor, and Disorientation. While
this suggests that our stabilization might not induce simulator sickness,
and that discomfort levels are similar to those for a perfectly stabilized
video, the absence of differences between PS and NS indicates that
the exposure might have been too short and the workspace too simple
to for a revealing simulator sickness comparison between the three
conditions.

The SSQ provided better insight in the case of the more visually
complex and realistic Workbench and Engine workspaces, as shown in
Table 4. S had a significant advantage over NS in terms of Total Severity
score, for both workspaces. The S advantage was due to less nausea
and oculomotor effort for the flatter but more cluttered Workbench, and
due to disorientation for the more occlusion/disocclusion prone Engine.
Although the differences between conditions were significant, for no
workspace and no condition was the Total Severity score increase from
pre- to post- exposure above the threshold of 70, which would indicate
the presence of simulator sickness.

Any within-subject study can also be analyzed as a between-subject
study with half the data points, by discarding the second half of each
participant data. Such a between-subject analysis confirms that the
advantages of S over NS are significant, and that there is no significant
advantage of PS over S.

5.3 Empirical Visualization Stability Analysis

Sect. 4 defined visualization instability and analyzed its dependence
on the workspace geometry approximation error and on the camera
tracking error. Here we measure the actual instability in the raw video
and in the stabilized video by tracking nine salient feature points over
the entire Sandbox sequence (Fig. 11). The features are dark particles
mixed in with the white sand, and they cover the matrix area uniformly.
The frame trajectories of the tracked features are shown in Fig. 12,
where the coordinates in the 1,280x720 video frame were normalized.
Whereas the tracked points move considerably in the NS video, their
trajectory is short and smooth in the S video. The average reprojection
error (Equation 1) over all feature points and all frames is 13.5%+7.9%
for NS and 2.0%=+1.8% for S; the maximum reprojection error is 37.5%
for NS and 5.8% for S.

The average visualization instability (Equation 2) over all 9 feature
points is given in Fig. 13 for both the unstabilized and the stabilized
sequences. These instability values are based on empirical values for
the x(P,V;,Vp) and (P, Vp) from the definition of reprojection error
Equation 1. Instability is large for NS, and it is largest for the first part
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Fig. 13: Empirical visualization instability measured by tracking feature
points over the video sequences.

of the sequence, when the mentee panned their head left and right re-
peatedly. This is expected since, for a non-stabilized sequence, panning
motions change the frame coordinates of workspace features quickly
and substantially. Instability is low for our stabilized sequence, and it
is lower for the first part of the sequence when workspace geometry
approximation error has little influence on instability. For the first part
of the sequence, the instability is very low most of the time, with the
exception of some small spikes which we attribute to camera tracking la-
tency. The average instability is 0.081% £ 0.082% for the NS sequence,
and about eight times lower for the S sequence at 0.011% =+ 0.0093%.

6 USER STUDY Il: SURGICAL TELEMENTORING IN AUSTERE
SETTINGS

The first user study focuses on the benefits of stabilization for
workspace understanding, which was tested directly with participants
who performed a task based on the workspace visualization. We con-
ducted a second user study, which tests the benefits of stabilization in
the context of a complete surgical telementoring system. The mentee
acquires the surgical field with a front-facing video camera built into
their AR HMD, the video is transmitted to the remote mentor site, the
video is stabilized, the stabilized video is shown to the mentor, the
mentor provides guidance by annotating the stabilized video, and the
annotations are sent to the mentee site, where they are overlaid onto the
surgical field using the AR HMD. This user study evaluates the benefit
of stabilization indirectly, in terms of mentee performance: the hypoth-
esis is that the stabilized video leads to a mentor’s better understanding
of the operating field, which leads to better guidance for the mentee,
which ultimately translates in better mentee performance.

6.1

Participants. The participants served as mentees in the study. We
recruited participants (n = 20) from the corpsmen of a naval medical
center who were training for performing surgical procedures in austere
settings. The participant age range was 18 - 43, and 3 participants
were female. The study used two mentors that are teaching faculty at a
surgery residency program. The mentor site was 900km away from the
mentee site. We opted for a within-subject design, with each participant
performing a task for each of two conditions.

Task. The participants were asked to perform a practice cricothy-
roidotomy on a synthetic patient simulator in an austere setting (Fig. 2).
The cricothyroidotomy is an emergency procedure performed when a
patient is not able to breathe through the nose or mouth due to airway
obstruction. The procedure entails performing precise incisions through
multiple layers of neck tissue, opening up the cricoid cartilage incision,
inserting and securing a breathing tube, and connecting a breathing bag
to the tube. The procedure stands to benefit greatly from telementoring
since often there is no time to bring an expert surgeon to the patient, or
to evacuate the patient.

Conditions. In the experimental condition (EC), the mentee benefited
from visual and verbal guidance from the mentor. The visual guidance
was provided through the AR HMD, which overlaid mentor-authored
annotations onto the operating field, such as freehand sketched incision
lines, or dragged-and-dropped instrument icons. The mentor monitored

Experimental Design
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the operating field and authored annotations based on a first-person
video of the operating field acquired by the mentee, which was sta-
bilized with our method. In the control condition (CC), the mentee
benefited only from verbal guidance from the mentor.

Metrics. The mentee performance was evaluated by two expert
surgeons located at the mentee site. The experts used the cricothyroido-
tomy evaluation sheet typically used at the naval center to score the
performance of the mentees. The evaluation sheet contains 10 sub-
scales based on procedure steps, which are scored with a 5-level Likert
Scale. The subscales evaluate aspects related to anatomical landmark
identification, incision performance, and patient airway acquisition.
The overall mentee performance score was computed as the average of
the 10 subscale scores.

6.2 Results and Discussion

A within-subject statistical analysis was run to compare both conditions,
with two data points for each metric and for each participant. The
condition was treated as an independent variable, while each of the
expert evaluation scores were treated as dependent variables. The
participants and the order of the trials were treated as blocks in the
statistical design. The data normality and equal variance assumptions
were confirmed with the Shapiro-Wilk test [21] and the Levene test [14],
respectively, and a one-way ANOVA was run [6].

The results are shown in Fig. 14, which gives means and standard
deviations. The total performance score (EE-T) was significantly higher
(p = 0.04) for EC than for CC. The means for each of the ten subscale
scores (i.e. EE-1 to EE-10) favor EC over CC, but only two of the
differences are significant, i.e. for EE-8 (p = 0.03) and for EE-9
(p=0.01). We attribute the lack of significance for the score differences
for the other subscales to the low number of participants. EE-8 verifies
that the cuff of the Melker canula was inflated with 10ml of air, which
indicates that there is air circulating through the tube. EE-9 verifies
that the air actually makes it into the lungs of the patient (simulator)
as indicated by a bilateral rise and fall of the chest. On the other
hand, EE-10 verifies that the cannula is properly secured with tape for
patient transport, so it concerns a step beyond the end of the actual
cricothyroidotomy, and participants could score highly on EE-10 even
if the procedure actually failed. Thus, EE-8 and EE-9 are important
scores that depend on the success of all previous steps, and they validate
the entire procedure.

Whereas the workspace used in our number matching study was
stationary, in the case of the surgical telementoring study the workspace
was highly dynamic, with the mentee’s hands and instruments mov-
ing in the video feed. While such dynamic environments pose great
challenges for alternative approaches that rely on the real time acqui-
sition of workspace geometry, the dynamic workspace does not pose
any additional challenge to our approach. Note that our definition of
instability (Equation 2) does apply to dynamic environments since it
does not simply measure how far the projection of a 3D point moves
from one frame to the next, which would penalize the moving elements
of the environment even in a perfectly stabilized visualization; instead,
our definition is based on how far away the 3D point is shown in the

visualization from where it would be shown in a perfectly stabilized
visualization.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We have presented the design and evaluation of a method for stabi-
lizing a first-person video of a workspace, such that it can effectively
convey the workspace to a remote collaborator. We investigated three
approaches and we chose an approach that projectively texture maps
the registered video feed onto a planar proxy of the workspace. The
approach has the advantages of stability, view agreement, real time
performance, lack of distortions, lack of disocclusion errors, good tem-
poral continuity, and robustness with workspace geometric, reflectance
property, and motion complexity. We refer the reader to the video
accompanying our paper for additional stabilization examples.

We have formally defined instability and we have performed a the-
oretical analysis that isolated the dependence of the instability on
workspace geometry approximation error, and on camera tracking error.
Then we validated our stabilization method in the context of providing
an eloquent description of the workspace that is sufficient to perform
challenging, cognitively demanding tasks. Finally, we validated our
method in a complete AR surgical telementoring system, where it was
used to visualize the operating field for a mentor located 900km away.

We conclude that the simplicity, robustness, and visual quality
achieved by our stabilization method are hard to match by approaches
based on 3D scene acquisition, especially in the context of demanding
applications such as surgical telementoring, where instability artifacts
cannot be tolerated.

One limitation that will be addressed in future work is that our
first study does not provide a sufficiently long exposure to measure
simulator sickness. Another direction of future work is to examine the
scenario where the workspace is conveyed to the remote collaborator
through a VR HMD, where simulator sickness is likely to be a bigger
factor even for short exposures.

Another limitation of the present work is that the second user study
compared AR telementoring based on our stabilization to a control con-
dition where the mentor and mentee could only communicate through
audio. Future studies will have to also compare to a control condition
where the mentor receives an unstabilized video, over larger number of
participants, that might reveal significant differences for more subscales
of surgical procedure performance.

Our work focused on AR telementoring, but our stabilization method
is likely to be useful in other contexts where a second user needs to
see what a first user sees. The current method aims to project the
acquired video to a stationary default view. Future work could examine
projecting the acquired video to a stable but changing view, e.g. an
orbiting camera trajectory circling above the workspace. Finally, our
work could be extended to transfer one user’s first-person view to the
first-person view of a second user, allowing the second user to change
the view on the workspace interactively.

Our work tests AR surgical telementoring with actual health care
practitioners, in a real training exercise, in a highly demanding austere
setting, which takes an important step towards moving AR technology
out of labs and placing it at the service of our society.
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